In this post I hope to start talking in a bit more depth about the global geometry of compact Kähler manifolds and their covers. Basic references for much of this post are the book Fundamental groups of compact Kähler manifolds by Amoros-Burger-Corlette-Kotschick-Toledo, and the paper Kähler hyperbolicity and L2 Hodge theory by Gromov. It turns out that there is a basic distinction in the world of compact Kähler manifolds between those that admit a holomorphic surjection with connected fibers to a compact Riemann surface of genus at least 2, and those that don’t. The existence or non-existence of such a fibration turns out to depend only on the fundamental group of the manifold, and in fact only on the algebraic structure of the cup product on ; thus one talks about fibered or nonfibered Kähler groups.
If X is a connected CW complex, by successively attaching cells of dimension 3 and higher to X we may obtain a CW complex Y for which the inclusion of X into Y induces an isomorphism on fundamental groups, while the universal cover of Y is contractible (i.e. Y is a with
the fundamental group of X). The (co)-homology of Y is (by definition) the group (co)-homology of the fundamental group of X. Since Y is obtained from X by attaching cells of dimension at least 3, the map induced by inclusion
is an isomorphism in dimension 0 and 1, and an injection in dimension 2 (dually, the map
is a surjection, whose kernel is the image of
under the Hurewicz map; so the cokernel of
measures the pairing of the 2-dimensional cohomology of X with essential 2-spheres).
A surjective map f from a space X to a space S with connected fibers is surjective on fundamental groups. This basically follows from the long exact sequence in homotopy groups for a fibration; more prosaically, first note that 1-manifolds in S can be lifted locally to 1-manifolds in X, then distinct lifts of endpoints of small segments can be connected in their fibers in X. A surjection on fundamental groups induces an injection on
in the other direction, and by naturality of cup product, if
is a subspace of
on which the cup product vanishes identically — i.e. if it is isotropic — then
is also isotropic. If S is a closed oriented surface of genus g then cup product makes
into a symplectic vector space of (real) dimension 2g, and any Lagrangian subspace V is isotropic of dimension g. Thus: a surjective map with connected fibers from a space X to a closed Riemann surface S of genus at least 2 gives rise to an isotropic subspace of
of dimension at least 2.
So in a nutshell: the purpose of this blog post is to explain how the existence of isotropic subspaces in 1-dimensional cohomology of Kähler manifolds imposes very strong geometric constraints. This is true for “ordinary” cohomology on compact manifolds, and also for more exotic (i.e. ) cohomology on noncompact covers.
1. Fibered Kähler groups
For a compact Kähler manifold Hodge theory gives
(recall that the notation means the holomorphic p-forms). In other words, every (complex) 1-dimensional cohomology class has a unique representative 1-form which is a linear combination of holomorphic and anti-holomorphic 1-forms. Since the wedge product of holomorphic 1-forms is holomorphic (the first miracle mentioned in the previous post!), for holomorphic 1-forms
we have
if and only if
as forms.
This has the following classical application:
Theorem (Castelnuovo-de Franchis): Let M be a compact Kähler manifold, and let V be a subspace of the space of holomorphic 1-forms on M which is isotropic with respect to the pairing (on cohomology; but equivalently, on forms). Suppose that the dimension of V is at least 2. Then there exists a surjective holomorphic map f with connected fibers from M to a compact Riemann surface C of genus g such that V is pulled back by f from C.
Proof: Let where
be a basis of V. Where two forms
don’t vanish, the condition that
says that they are proportional, and therefore the ratio
is a holomorphic function. If we let U denote the open (and dense) subset of M where none of the
vanish, then the ratios
define the coordinates of a holomorphic map to
. Since
is closed, its kernel is tangent to a (complex) codimension 1 foliation
on U. Since the
are closed, the ratio
is constant on the leaves of
, so the image of U in
is 1-dimensional, and the map factors through a map to a compact Riemann surface D.
A priori a holomorphic map to a Riemann surface defined on an open set U does not extend to M; the simplest example to think of is the holomorphic function
where x and y are the two coordinate functions. This map is well defined away from the origin, where it is indeterminate. On the other hand, as we approach the origin radially along a (complex) line, the ratio is constant; so the map, defined on
, extends over a copy of
obtained by blowing up the origin. In general therefore a map
extends to
where M’ is obtained from M by blowing up along the indeterminacy of the map f, and the fibers of the blow-up map from M’ to M are all copies of
.
Now, the map does not necessarily have connected fibers, but it is proper. So there is a (so-called) Stein factorization
for some intermediate compact Riemann surface C, where
has connected fibers, and
is finite-to-one. As a set, the points of C are just the connected components of the point preimages of
. As a complex manifold, the charts on
are modeled on the transverse holomorphic structure on the foliation
. Notice that since (as remarked above) the 1-forms
are all locally constant on the leaves of
, they descend to well-defined 1-forms on
(which pull back to the
under the map). In particular, we deduce that
has genus at least
. But now we see that there was no indeterminacy at all, since the
fibers of the blow up
admit no non-constant holomorphic map to a surface of positive genus, and therefore the map
factors through
after all. qed
Now suppose M is a compact Kähler manifold, and let V be a subspace of which is isotropic with respect to cup product, and of dimension at least 2. We can choose real harmonic 1-forms
which are a basis for V, and take their holomorphic (1,0)-part
. Then
is holomorphic, and is equal to the (2,0)-part of
. Since the holomorphic 2-forms inject into cohomology, it follows that
as forms. It is straightforward to check that the
are linearly independent if the
are, so we obtain an isotropic subspace of holomorphic 1-forms of the same dimension as V. Applying Castelnuovo-de Franchis, we see that M fibers over D as above (this observation is due to Catanese).
From this we easily deduce the following theorem of Siu-Beauville, proved originally by hard analytic methods (i.e. the theory of harmonic maps):
Corollary (Siu, Beauville): Let M be a compact Kähler manifold, and let . Then there is a holomorphic map with connected fibers from M to a compact Riemann surface C of genus at least g if and only if there is a surjective homomorphism
.
Proof: A surjective map with connected fibers is surjective on fundamental groups. Conversely, a surjective map on fundamental groups pulls back injectively, and pulls back a maximal isotropic subspace of
(which has dimension
) to an isotropic subspace of
. qed
Definition: A Kähler group is fibered if it surjects onto the fundamental group of a compact Riemann surface of genus at least 2; equivalently, if some (equivalently: every) compact Kähler manifold with that fundamental group holomorphically fibers over a compact Riemann surface of genus at least 2 with connected fibers.
Note that the condition of being fibered implies .
2. L2 cohomology
Perhaps the fundamental method in geometric group theory is to study a group via its cocompact isometric action on some (typically noncompact) space. If G is the fundamental group of a manifold M, then G acts as a deck group on the universal cover of M. The aim of geometric group theory is to perceive algebraic properties of the group G in the “global” geometry of this universal cover.
The most important tool for the study of differential forms on compact Riemannian manifolds is Hodge theory. To use this tool on noncompact manifolds one must impose additional (global) restrictions on the forms that one studies. Thus Hodge theory on noncompact manifolds is related directly not to ordinary cohomology, but to more refined, quantitative versions, of which one of the most important is -cohomology.
If M is a smooth Riemannian manifold (not assumed to be compact), the pointwise inner product on forms gives rise to a global inner product which is well-defined on compactly supported forms. We say that a smooth form is in
if
Now, the -forms do not usually form a chain complex, but we can pass to a subcomplex
consisting of forms
for which both
and
are
-forms. Since
this is a complex, and we can define
cohomology:
In general, the image of d is not a closed subspace (in the topology), so we define the reduced
cohomology to be:
The advantage of working with reduced cohomology is that there is an -analogue of the Hodge theorem. The operators
and
still make sense on a noncompact Riemannian manifold, and so does
. We can define the harmonic forms to be those for which
, and we denote by
the space of harmonic p-forms which are
.
Let’s impose some reasonable global conditions on our manifold M. We say that a (complete) Riemannian manifold has bounded geometry if it satisfies the following two conditions:
- The curvature and its derivatives satisfy uniform 2-sided bounds:
for each k; and
- The injectivity radius satisfies a uniform lower bound:
everywhere.
Bounded geometry is the natural condition to impose to ensure that the manifold is “precompact” in Gromov-Hausdorff space; i.e. that for any sequence of points in
the sequence of pointed metric spaces
contain a subsequence which converge on compact subsets to a pointed Riemannian manifold
. An equivalent way to think about it is that this is the condition which ensures that the Riemannian manifold
can appear as a leaf in a compact lamination. The condition of bounded geometry is automatically satisfied for any cover (infinite or not) of a compact Riemannian manifold. Since this is essentially the only class of noncompact Riemannian manifolds we will consider, we hereafter assume that all our noncompact Riemannian manifolds have bounded geometry.
Theorem (L2 Hodge theorem): Let M be a complete Riemannian manifold with bounded geometry. Then every cohomology class in has a unique representative
minimizing
. Such a form is harmonic; i.e. it is in
. Moreover, there is an orthogonal decomposition
One subtlety is that it is no longer true that is a formal adjoint to d, since integration by parts gives rise to a potentially nontrivial boundary term “at infinity”. But for an
form
, this boundary term vanishes, and one has
(since a priori the forms and
are not
, one first interprets this by using cutoff functions, and passing to a limit). In other words, a harmonic form which is also
is closed and coclosed; conversely, any form which is closed and coclosed is harmonic (with no analytic conditions).
On a Kähler manifold the identity still holds pointwise (since this is a consequence purely of the local properties of the metric), and so there is a further decomposition of
into components
which are individually harmonic. There is furthermore a Hodge decomposition
and an form
satisfies
if and only if
and
. Thus
consists precisely of holomorphic
p-forms.
Example: A harmonic form which is not does not have to be in the kernel of d. For instance, a function is closed if and only if it is (locally) constant, but any nonconstant holomorphic function on a domain in
has harmonic real and imaginary parts. On the other hand, suppose that
is harmonic and
, and exact as a form, so that
for some smooth function f. Then we claim that f is actually harmonic (but not closed unless
). For,
and
commute, so
is a constant c, and by the Gaffney cutoff trick, it can be shown that c=0.
3. Kähler hyperbolicity
Gromov showed that under certain geometric conditions, the reduced cohomology of a Kähler manifold vanishes outside the middle dimension. To define this condition, one first introduces the notion of a bounded form; this is a form
for which
is finite, where
denotes the (operator) norm of
at the point p.
Definition: A compact Kähler manifold M is Kähler hyperbolic if the pullback of the symplectic form
to the universal cover
satisfies
for some bounded 1-form
.
Suppose M is Kähler hyperbolic, and let be any harmonic
form on
. Then
is closed, and
Since is bounded, the form
is
. On the other hand,
is bounded (because it is pulled back from a form on a compact manifold), so
is
. Now, (recalling the notation L for the operation of wedging with the Kähler form), the Kähler identity
is a purely local calculation, and therefore on any Kähler manifold (compact or not), wedge product with the Kähler form takes harmonic forms to harmonic forms. It follows that
is harmonic,
, and equal to the image of an
form under d; thus it vanishes identically.
But if V is a real vector space of dimension 2n, and is a nondegenerate 2-form on V, then wedging with
is injective on
below the middle dimension (this is the linear algebra fact which underpins the Hard Lefschetz Theorem for compact Kähler manifolds). Thus the operator L is injective on harmonic
-forms below the middle dimension. Dualizing, the operator
is injective above the middle dimension, and we deduce the following:
Theorem (Gromov): If M is compact and Kähler hyperbolic, the reduced cohomology of the universal cover
vanishes outside the middle dimension.
Example: If M is any compact manifold with then for any closed form
on M the pullback of
to the universal cover is d of a bounded form. This is proved by the Poincaré Lemma, since for a complete simply-connected manifold with
, coning a submanifold along geodesics to a point gives a cone whose volume is bounded by the volume of the submanifold times a constant. So every Kähler manifold with a metric of strict negative curvature is Kähler hyperbolic. More generally, if M is merely nonpositively curved, and the flat planes are isotropic for the Kähler form, then the manifold is still Kähler hyperbolic. This applies (for example) to Kähler manifolds which are compact and locally symmetric of noncompact type. Generalizing in another direction, if M is Kähler with
and
word-hyperbolic, then M is Kähler hyperbolic.
4. Calibrations
The previous section shows that vanishes whenever M is Kähler hyperbolic of complex dimension at least 2, where
denotes the universal cover of M. In fact, it turns out that one can completely understand the fundamental groups of Kähler manifolds for which
is nonzero: it turns out that such groups are always virtually equal to the fundamental group of a closed Riemann surface of genus at least 2.
So let’s suppose M is a compact Kähler manifold, that is its universal cover, and let’s suppose that
is nonzero. Since
is simply-connected, every
harmonic form (which is necessarily closed) is actually exact. Let
be a nonzero harmonic
form, and let
denote its (1,0)-part, which is an
holomorphic 1-form. Since
is also exact, we can write
for some holomorphic function
on
. By the coarea formula we compute
or in other words, most of the level sets have finite volume. On the other hand, these level sets are complete holomorphic submanifolds, and holomorphic submanifolds of Kähler manifolds turn out to enjoy a very strong geometric property, which we now explain.
On a Kähler manifold, the symplectic form is a calibrating form. This means that it satisfies the following two properties:
- it is closed; and
- it satisfies a pointwise estimate
for all real 2k-planes A, with equality if and only if A is a complex subspace.
It follows that if S is a holomorphic submanifold of complex dimension k, and S’ is a real 2k dimensional submanifold obtained from S by a compactly supported variation so that S and S’ are in the same (relative) homology class, there is an inequality
In other words, holomorphic submanifolds of Kähler manifolds are absolute volume minimizers in their homology classes (amongst compactly supported variations). From this one deduces the following:
Lemma: Let M be a Kähler manifold with bounded geometry. Then for each k there is a constant C so that if S is a complete holomorphic submanifold of complex dimension k, there is an estimate
Proof: It suffices to show that for some fixed (taken to be the injectivity radius, say), there is a constant
so that the volume of
is at least
for any point p in S. A Kähler manifold with bounded geometry is uniformly holomorphically bilipschitz to flat
in balls of size smaller than the injectivity radius, so we need only prove this estimate for holomorphic submanifolds of
.
But actually, the estimate follows just from the fact that S is a minimal surface. If S is a complete minimal surface of real dimension N in a Euclidean space, passing through the origin (say), then the Monotonicity Formula says that for any there is an inequality
This can be proved directly by using the vanishing of the mean curvature, but there is a softer proof that where C is the volume of the unit ball in Euclidean N dimensional space, which is enough for our purposes. To see this, observe that C is the limit of
as R goes to zero. Suppose on some interval
that
somewhere, WLOG achieving its minimum at
. The value of
on
gives a lower bound for the volume of
, by the coarea formula. But the cone on
evidently has less volume than this, in violation of the fact that S is calibrated. The estimate, and the proof follow. qed
It follows from this estimate that some of the fibers of are compact. The components of these fibers are the leaves of a foliation, and since the foliation is defined locally by a closed 1-form, the set of compact leaves is open; but these leaves are all locally homologous and thus have locally constant volume and therefore uniformly bounded diameter, so the set of compact leaves is closed, and therefore every leaf is compact. The space of leaves is 1 (complex) dimensional, and we thereby obtain a proper holomorphic map with connected fibers
to a Riemann surface S. Note that the group of holomorphic automorphisms of
(which includes the deck group
) must permute leaves of the foliation; for, since the leaves are compact, if their image were not contained in a leaf, the map to
would be nonconstant, in contradiction of the fact that a holomorphic map from a compact holomorphic manifold to a noncompact one must be constant.
In summary, the deck group acts on
permuting the fibers of the map h, and thus descends to an action on S. Because the fibers have uniformly bounded diameter, and the action of the deck group on
is cocompact and proper, the action on S is also cocompact and proper. Since the map h is surjective with connected fibers, S is simply-connected; since the reduced
-cohomology class
is pulled back from S, it follows that S is the unit disk, and therefore
contains a finite index subgroup which acts freely, and is isomorphic to the fundamental group of a closed Riemann surface of genus at least 2.
Now, it turns out that for a compact manifold M, the 1-dimensional -cohomology of the universal cover depends only on the fundamental group G of M, and is equal to
, where the (reduced)
cohomology groups may be defined directly from the bar complex. We have therefore proved the following theorem of Gromov:
Theorem (Gromov): Let G be a Kähler group with . Then G is commensurable with the fundamental group of a closed Riemann surface of genus at least 2.
5. Ends
To apply Gromov’s theorem (and its generalizations) it is important to have some interesting examples of groups with . Let X be a locally compact topological space. Then for every compact set K we have the set
of components of X-K, and an inclusion
induces
. The space of ends of X (introduced by Freudenthal) is the inverse limit:
taken with respect to the directed system of complements of compact subsets. If each is finite, the space of ends is compact.
Now, let G be a finitely generated group. For each finite generating set we can build a Cayley graph C, which has one vertex for each element of G, and one edge for each pair of elements which differ by (right) multiplication by a generator. The graph C is locally finite and connected, and we define the space of ends of G, denoted , to be just
. It turns out that this does not depend on the choice of a finite generating set, but is really an invariant of the group.
The theory of ends of groups is completely understood, thanks to the work of Stallings:
Theorem (Stallings, ends of groups): Let G be a finitely generated group. Then has cardinality 0,1,2 or
. Moreover,
if and only if G is finite;
if and only if G is virtually equal to
; and
if and only if G splits as a nontrivial amalgam or HNN extension
or
where B is finite, and G is not virtually cyclic.
Actually, the only hard part of this theorem is the third bullet; the rest is elementary, and was known to Freudenthal. The third case is equivalent to the existence of a nontrivial action of G on a tree T (which is not a line) with finite edge stabilizers. It follows that groups with infinitely many ends are non-amenable.
Now, let M be a compact Riemannian manifold, and suppose that the fundamental group G has infinitely many ends. This implies that the universal cover also has infinitely many ends, and we may find a compact subset
of
whose complement has at least two unbounded regions. Define a function f on
which is equal to 0 on some (but not all) of the unbounded regions of
and 1 on the rest. Then
has compact support (contained in K) and is therefore
. On the other hand, if
is any function with
then
is a constant, so
is constant and nonzero on some end of
, and is therefore not
. It follows that
is nonzero in unreduced
.
Now, on functions f we have an equality
. The Laplacian is self-adjoint, with non-negative real spectrum. So to prove that
is equal to
it suffices to establish a spectral gap for
; i.e. to prove an estimate of the form
for all functions f of compact support (which are dense in ). In exactly this context one has the following famous theorem of Brooks:
Theorem (Brooks): with notation as above, one has if and only if
is an amenable group.
One can think of the size of as governing the rate of dissipation of the
norm of a function f as it evolves by the heat equation
. Geometrically it is plausible that heat dissipates at a definite rate when it is concentrated in a region whose boundary is big compared to its volume (since then a definite amount of heat can escape out the boundary). So heat should dissipate at a definite rate unless there are a sequence of compact regions
in
, exhausting
, for which
. To each such region
one can assign a finite subset
of G, by looking at which translates of a basepoint are contained in
; this sequence of subsets is known as a Følner sequence, and the existence of a Følner sequence for a countable group G is one of the definitions of amenability (the equivalence to the other standard definitions is due to Følner). The hard details of Brooks’ argument are to show that one can take subsets
whose boundary is regular enough that the comparison between volumes of subsets and their boundaries in the continuous and the discrete world is uniform.
So in conclusion, if G is a group with infinitely many ends, then reduced and ordinary cohomology agree in dimension 1, and we can construct a nontrivial class
as above. Putting this together we deduce the following:
Corollary (Gromov): A Kähler group is either finite, or has 1 end.
Proof: A group with two ends is virtually equal to , which is not Kähler because it has
odd. A group with infinitely many ends has nontrivial reduced
-cohomology in dimension one. But for a Kähler group, this implies the group is commensurable with the fundamental group of a closed surface of genus at least 2; such groups have only 1 end after all. qed
6. Ends and extensions
The arguments of Gromov can be generalized considerably. It should be remarked from the outset that at very few points in the proof of Gromov’s theorem did we use the fact that the manifold was the universal cover of M.
The following is proved by Arapura-Bressler-Ramachandran:
Theorem (Arapura-Bressler-Ramachandran): Let M be a complete Kähler manifold with bounded geometry, and suppose that has dimension at least 2. Then there is a hyperbolic Riemann surface S and a proper holomorphic map
with connected fibers. Moreover, the fibers of the map are permuted by the holomorphic automorphisms of M, and the map induces an isomorphism from
to
.
Here the subscript “ex” means the harmonic 1-forms which are exact (as ordinary forms). Given an exact harmonic
form
we can take the holomorphic (1,0) part
which is
and closed. But we cannot assume it is exact if
is nontrivial. If we only have one
, then we are more or less stuck. But if we have at least two such forms, then the following remarkable Lemma (due originally to Gromov) applies:
Lemma (cup product): Let M be a complete Kähler manifold with bounded geometry, and let be real, harmonic exact
1-forms. Let
be their (1,0)-components. Then
pointwise.
Proof: The first remark to make is that on a complete Kähler manifold with bounded geometry, any harmonic form is actually bounded. Equivalently, since harmonic forms are smooth, there is no sequence of points
going off to infinity such that the operator norms
diverge. Since the manifold has bounded geometry, we can integrate the square of
on disjoint balls of definite radius centered at such points, and the claim will therefore follow if we show the integral of the square of a harmonic form on a ball of definite radius is controlled by below by its value at the center. Assume we are in flat space; then this claim is obviously true for a linear form. But a harmonic form satisfies an elliptic 2nd order equation, which shows that the higher derivatives can be controlled in terms of the first derivative; the claim follows.
Now let be an exact
harmonic form, and write
. Suppose
is a closed
form. Then
is in
because
is bounded (as above). If we define
to be equal to f where
and locally constant elsewhere, then
is equal to
where
and vanishes elsewhere. But now
is bounded, so
is in
, whereas
in
. We deduce that
is zero in reduced cohomology.
Finally, if we let be the decomposition of the (1,0) forms into real and imaginary parts, then we compute
Now, the imaginary part of this is harmonic and ; on the other hand, we have just shown it is trivial in reduced
cohomology. Thus it must vanish identically. But then
must vanish identically too, proving the lemma. qed
It follows that the space determines (by taking holomorphic parts) an isotropic subspace of
, which by hypothesis has dimension at least 2. Each form in this space determines a complex codimension 1 foliation whose leaves are tangent to the kernel, and because the forms are closed and the space is isotropic, this foliation
is independent of the choice of form. Furthermore, on any open subset where two such holomorphic 1-forms
do not both vanish, the ratio
defines a holomorphic map to
.
At this point the following fact is extremely handy:
Proposition: Let M be a connected complex manifold (not assumed to be compact!) and and
linearly independent closed holomorphic 1-forms with
. Then
has no indeterminacy; i.e. it defines a holomorphic map from M to
.
This Proposition is Lemma 2.2 in a paper of Napier-Ramachandran, where they seem to suggest that the fact is standard, but give an elementary proof. Since the argument is local, one can write and
and then one observes that the functions
are locally constant on the fiber over each point
; the argument then follows essentially from a (co)dimension count.
Anyway, once this proposition is proved, it follows that the components of the level sets of this function agree with the leaves of , which can be taken to be the points of a Riemann surface S. An argument similar to the one above (using a pair of real harmonic functions instead of a single holomorphic function in the coarea formula) shows that some, and therefore every, leaf is compact of bounded volume. Pulling back an
form on S gives something
by uniform boundedness of the volume of the fibers; conversely, exact harmonic
forms on M descend to S because they are constant on the leaves of the foliation. This proves the theorem.
Corollary: Let G be a Kähler group, and suppose there is an exact sequence
where and
. Then H is commensurable to the fundamental group of a compact Riemann surface of genus at least 2.
Proof: Let M be a compact Kähler manifold with fundamental group G, and let N be the cover with fundamental group K. Then H acts on N cocompactly, and it follows that . An unbounded sequence of deck transformations must push most of the mass of an
harmonic form off to infinity, so necessarily the space
is infinite dimensional; since
is finite dimensional, there is an infinite dimensional space of exact forms. Thus N fibers over S as above. Since the map from N to S is surjective on fundamental groups, it follows that S is of finite type (because
is finite dimensional). But the deck group H acts on S discretely and cocompactly by holomorphic automorphisms (which are isometries in the hyperbolic metric), so actually S is the disk. qed
Example (Arapura): The pure braid group surjects onto a (virtually) free group, with finitely generated kernel, and therefore it is never Kähler. Note that
so these groups can’t always be ruled out as Kähler groups on the oddness of
alone. On the other hand, pure braid groups are fundamental groups of hyperplane complements: the group
is the fundamental group of the space of ordered distinct n-tuples of points in
, which is the complement of a hyperplane arrangement in
. So it follows that this quasiprojective variety can’t be compactified in such a way as that the compactifying locus has big codimension (or one could apply the Lefschetz hyperplane theorem).
(Updated November 26: added references)