
Recent Posts
 StiefelWhitney cycles as intersections
 Schläfli – for lush, voluminous polyhedra
 Slightly elevated Teichmuller theory
 Mr Spock complexes (after Aitchison)
 Roots, Schottky semigroups, and Bandt’s Conjecture
 Taut foliations and positive forms
 Explosions – now in glorious 2D!
 Dipoles and Pixie Dust
 Mapping class groups: the next generation
 Groups quasiisometric to planes
 Div, grad, curl and all this
 A tale of two arithmetic lattices
 3manifolds everywhere
 kleinian, a tool for visualizing Kleinian groups
 Kähler manifolds and groups, part 2
 Kähler manifolds and groups, part 1
 Liouville illiouminated
 Scharlemann on Schoenflies
 You can solve the cube – with commutators!
 Chiral subsurface projection, asymmetric metrics and quasimorphisms
 Random groups contain surface subgroups
 wireframe, a tool for drawing surfaces
 Cube complexes, Reidemeister 3, zonohedra and the missing 8th region
 Orthocentricity
 Kenyon’s squarespirals
Blogroll
 0xDE
 Area 777
 Combinatorics and more
 Deep street soul
 Evaluating EDiscovery
 floerhomology
 Gaddeswarup
 Geometric Group Theory
 Godel's lost letter and P=NP
 Images des mathematiques
 Jim Woodring
 Language Log
 Letters of note
 Low dimensional topology
 Math Overflow
 Math/Art Blog
 Mathematics under the microscope
 nCategory Cafe
 Noncommutative geometry
 Paul Krugman
 Persiflage
 Preposterous Universe
 Questionable content
 Quomodocumque
 Real Climate
 Scott McCloud
 Secret blogging seminar
 Sketches of topology
 Tanya Khovanova
 Terry Tao
 Tim Gowers
 Tony Phillips
Books
Software
Recent Comments
Danny Calegari on Schläfli – for lush, vol… melissa on Schläfli – for lush, vol… ranicki on StiefelWhitney cycles as… Danny Calegari on StiefelWhitney cycles as… ranicki on StiefelWhitney cycles as… Categories
 3manifolds (20)
 4manifolds (2)
 Algebraic Geometry (2)
 Algebraic Topology (1)
 Biology (2)
 Commentary (4)
 Complex analysis (11)
 Convex geometry (2)
 Diophantine approximation (1)
 Dynamics (13)
 Ergodic Theory (8)
 Euclidean Geometry (8)
 Foliations (2)
 Geometric structures (6)
 Groups (31)
 Hyperbolic geometry (25)
 Knot theory (1)
 Lie groups (8)
 Number theory (2)
 Overview (2)
 Polyhedra (3)
 Probability (1)
 Projective geometry (2)
 Psychology (3)
 Riemannian geometry (1)
 Rigidity (2)
 Special functions (2)
 Surfaces (20)
 Symplectic geometry (3)
 TQFT (1)
 Uncategorized (5)
 Visualization (10)
Meta
Tag Archives: surface subgroup
Surface subgroups of Sapir’s group
Let be the free group on two generators, and let be the endomorphism defined on generators by and . We define Sapir’s group to be the ascending HNN extension This group was studied by CrispSageevSapir in the context of their … Continue reading
Posted in Ergodic Theory, Groups, Surfaces
Tagged ffolded surface, fatgraph, HNN extension, hyperbolic group, Sapir's group, Stallings folding, surface subgroup
12 Comments
Polygonal words
Last Friday, Henry Wilton gave a talk at Caltech about his recent joint work with Sanghyun Kim on polygonal words in free groups. Their work is motivated by the following wellknown question of Gromov: Question(Gromov): Let be a oneended wordhyperbolic group. … Continue reading
Posted in Groups, Surfaces
Tagged double of free group, ends, Henry Wilton, hyperbolic groups, roundoff trick, Sanghyun Kim, scl, Stallings theorem on ends, surface subgroup
6 Comments