
Recent Posts
 Schläfli – for lush, voluminous polyhedra
 Slightly elevated Teichmuller theory
 Mr Spock complexes (after Aitchison)
 Roots, Schottky semigroups, and Bandt’s Conjecture
 Taut foliations and positive forms
 Explosions – now in glorious 2D!
 Dipoles and Pixie Dust
 Mapping class groups: the next generation
 Groups quasiisometric to planes
 Div, grad, curl and all this
 A tale of two arithmetic lattices
 3manifolds everywhere
 kleinian, a tool for visualizing Kleinian groups
 Kähler manifolds and groups, part 2
 Kähler manifolds and groups, part 1
 Liouville illiouminated
 Scharlemann on Schoenflies
 You can solve the cube – with commutators!
 Chiral subsurface projection, asymmetric metrics and quasimorphisms
 Random groups contain surface subgroups
 wireframe, a tool for drawing surfaces
 Cube complexes, Reidemeister 3, zonohedra and the missing 8th region
 Orthocentricity
 Kenyon’s squarespirals
 Thurston talks on geometrization at Harvard
Blogroll
 0xDE
 Area 777
 Combinatorics and more
 Deep street soul
 Evaluating EDiscovery
 floerhomology
 Gaddeswarup
 Geometric Group Theory
 Godel's lost letter and P=NP
 Images des mathematiques
 Jim Woodring
 Language Log
 Letters of note
 Low dimensional topology
 Math Overflow
 Mathematics under the microscope
 nCategory Cafe
 Noncommutative geometry
 Paul Krugman
 Persiflage
 Preposterous Universe
 Questionable content
 Quomodocumque
 Real Climate
 Scott McCloud
 Secret blogging seminar
 Sketches of topology
 T Calegari
 Tanya Khovanova
 Terry Tao
 Tim Gowers
 Tony Phillips
Books
Software
Recent Comments
Herman Jaramillo on Hyperbolic Geometry Notes #2… SecretDoves on Random groups contain surface… Anton Izosimov on How to see the genus S^3 (the most basic… on Scharlemann on Schoenflies isomorphismes on Laying train tracks Categories
 3manifolds (20)
 4manifolds (2)
 Algebraic Geometry (2)
 Biology (2)
 Commentary (4)
 Complex analysis (11)
 Convex geometry (2)
 Diophantine approximation (1)
 Dynamics (13)
 Ergodic Theory (8)
 Euclidean Geometry (8)
 Foliations (2)
 Geometric structures (6)
 Groups (31)
 Hyperbolic geometry (25)
 Knot theory (1)
 Lie groups (8)
 Number theory (2)
 Overview (2)
 Polyhedra (3)
 Probability (1)
 Projective geometry (2)
 Psychology (3)
 Riemannian geometry (1)
 Rigidity (2)
 Special functions (2)
 Surfaces (20)
 Symplectic geometry (3)
 TQFT (1)
 Uncategorized (5)
 Visualization (10)
Meta
Tag Archives: stable commutator length
scl, sails and surgery
I have just uploaded a paper to the arXiv, entitled “Scl, sails and surgery”. The paper discusses a connection between stable commutator length in free groups and the geometry of sails. This is an interesting example of what sometimes happens … Continue reading
Big mapping class groups and dynamics
Mapping class groups (also called modular groups) are of central importance in many fields of geometry. If is an oriented surface (i.e. a manifold), the group of orientationpreserving selfhomeomorphisms of is a topological group with the compactopen topology. The mapping … Continue reading
Quasimorphisms and laws
A basic reference for the background to this post is my monograph. Let be a group, and let denote the commutator subgroup. Every element of can be expressed as a product of commutators; the commutator length of an element is the … Continue reading
five week plan
As an experiment, I plan to spend the next five weeks documenting my current research on this blog. This research comprises several related projects, but most are concerned in one way or another with the general program of studying the … Continue reading
Posted in Overview
Tagged Gromov's question, hyperbolic groups, scl, stable commutator length, surface groups
4 Comments