A few weeks ago, Ian Agol, Vlad Markovic, Ursula Hamenstadt and I organized a “hot topics” workshop at MSRI with the title Surface subgroups and cube complexes. The conference was pretty well attended, and (I believe) was a big success; the organizers clearly deserve a great deal of credit. The talks were excellent, and touched on a wide range of subjects, and to those of us who are mid-career or older it was a bit shocking to see how quickly the landscape of low-dimensional geometry/topology and geometric group theory has been transformed by the recent breakthrough work of (Kahn-Markovic-Haglund-Wise-Groves-Manning-etc.-) Agol. Incidentally, when I first started as a graduate student, I had a vague sense that I had somehow “missed the boat” — all the exciting developments in geometry due to Thurston, Sullivan, Gromov, Freedman, Donaldson, Eliashberg etc. had taken place 10-20 years earlier, and the subject now seemed to be a matter of fleshing out the consequences of these big breakthroughs. 20 years and several revolutions later, I no longer feel this way. (Another slightly shocking aspect of the workshop was for me to realize that I am older or about as old as 75% of the speakers . . .)
The rationale for the workshop (which I had some hand in drafting, and therefore feel comfortable quoting here) was the following:
Recently there has been substantial progress in our understanding of the related questions of which hyperbolic groups are cubulated on the one hand, and which contain a surface subgroup on the other. The most spectacular combination of these two ideas has been in 3-manifold topology, which has seen the resolution of many long-standing conjectures. In turn, the resolution of these conjectures has led to a new point of view in geometric group theory, and the introduction of powerful new tools and structures. The goal of this conference will be to explore the further potential of these new tools and perspectives, and to encourage communication between researchers working in various related fields.
I have blogged a bit about cubulated groups and surface subgroups previously, and I even began this blog (almost 4 years ago now) initially with the idea of chronicling my efforts to attack Gromov’s surface subgroup question. This question asks the following:
Gromov’s Surface Subgroup Question: Does every one-ended hyperbolic group contain a subgroup which is isomorphic to the fundamental group of a closed surface of genus at least 2?
The restriction to one-ended groups is just meant to rule out silly examples, like finite or virtually cyclic groups (i.e. “elementary” hyperbolic groups), or free products of simpler hyperbolic groups. Asking for the genus of the closed surface to be at least 2 rules out the sphere (whose fundamental group is trivial) and the torus (whose fundamental group cannot be a subgroup of a hyperbolic group). It is the purpose of this blog post to say that Alden Walker and I have managed to show that Gromov’s question has a positive answer for “most” hyperbolic groups; more precisely, we show that a random group (in the sense of Gromov) contains a surface subgroup (in fact, many surface subgroups) with probability going to 1 as a certain natural parameter (the “length”
of the random relators) goes to infinity. (update April 8: the preprint is available from the arXiv here.)





