-
Recent Posts
- Bing’s wild involution
- Stiefel-Whitney cycles as intersections
- Schläfli – for lush, voluminous polyhedra
- Slightly elevated Teichmuller theory
- Mr Spock complexes (after Aitchison)
- Roots, Schottky semigroups, and Bandt’s Conjecture
- Taut foliations and positive forms
- Explosions – now in glorious 2D!
- Dipoles and Pixie Dust
- Mapping class groups: the next generation
- Groups quasi-isometric to planes
- Div, grad, curl and all this
- A tale of two arithmetic lattices
- 3-manifolds everywhere
- kleinian, a tool for visualizing Kleinian groups
- Kähler manifolds and groups, part 2
- Kähler manifolds and groups, part 1
- Liouville illiouminated
- Scharlemann on Schoenflies
- You can solve the cube – with commutators!
- Chiral subsurface projection, asymmetric metrics and quasimorphisms
- Random groups contain surface subgroups
- wireframe, a tool for drawing surfaces
- Cube complexes, Reidemeister 3, zonohedra and the missing 8th region
- Orthocentricity
Blogroll
- 0xDE
- Area 777
- Bluefawnpinkmanga
- Combinatorics and more
- Deep street soul
- Evaluating E-Discovery
- floerhomology
- Gaddeswarup
- Geometric Group Theory
- Godel's lost letter and P=NP
- Images des mathematiques
- Jim Woodring
- Language Log
- Letters of note
- Low dimensional topology
- Math Overflow
- Math/Art Blog
- Mathematics under the microscope
- n-Category Cafe
- Noncommutative geometry
- Paul Krugman
- Persiflage
- Preposterous Universe
- Questionable content
- Quomodocumque
- Real Climate
- Scott McCloud
- Secret blogging seminar
- Sketches of topology
- Tanya Khovanova
- Terry Tao
- Tim Gowers
- Tony Phillips
Books
Software
Recent Comments
Anton Izosimov on How to see the genus Adam Wood on How to see the genus Constancy of the spe… on Measure theory, topology, and… Torsten on Circle packing – theory… aveliz on Second variation formula for m… Categories
- 3-manifolds (21)
- 4-manifolds (2)
- Algebraic Geometry (2)
- Algebraic Topology (1)
- Biology (2)
- Commentary (4)
- Complex analysis (11)
- Convex geometry (2)
- Diophantine approximation (1)
- Dynamics (13)
- Ergodic Theory (8)
- Euclidean Geometry (8)
- Foliations (2)
- Geometric structures (6)
- Groups (31)
- Hyperbolic geometry (25)
- Knot theory (1)
- Lie groups (8)
- Number theory (2)
- Overview (2)
- Polyhedra (3)
- Probability (1)
- Projective geometry (2)
- Psychology (3)
- Riemannian geometry (1)
- Rigidity (2)
- Special functions (2)
- Surfaces (20)
- Symplectic geometry (3)
- TQFT (1)
- Uncategorized (6)
- Visualization (10)
Meta
Category Archives: Surfaces
Agol’s Virtual Haken Theorem (part 1)
I am in Paris attending a workshop at the IHP where Ian Agol has just given the first of three talks outlining his proof of the Virtual Haken Conjecture and Virtual Fibration Conjecture in 3-manifold topology (hat tip to Henry … Continue reading
The Hall-Witt identity
The purpose of this blog post is to try to give some insight into the “meaning” of the Hall-Witt identity in group theory. This identity can look quite mysterious in its algebraic form, but there are several ways of describing it geometrically which … Continue reading
Posted in Groups, Lie groups, Surfaces, Visualization
Tagged commutators, gropes, Hall-Witt identity, visualization
1 Comment
Hyperbolic Geometry Notes #2 – Triangles and Gauss Bonnet
In this post, I will cover triangles and area in spaces of constant (nonzero) curvature. We are focused on hyperbolic space, but we will talk about spheres and the Gauss-Bonnet theorem. 1. Triangles in Hyperbolic Space Suppose we are given … Continue reading
Polygonal words
Last Friday, Henry Wilton gave a talk at Caltech about his recent joint work with Sang-hyun Kim on polygonal words in free groups. Their work is motivated by the following well-known question of Gromov: Question(Gromov): Let be a one-ended word-hyperbolic group. … Continue reading
Posted in Groups, Surfaces
Tagged double of free group, ends, Henry Wilton, hyperbolic groups, roundoff trick, Sang-hyun Kim, scl, Stallings theorem on ends, surface subgroup
6 Comments
Minimal laminations with leaves of different conformal types
The “header image” for this blog is an example of an interesting construction in 2-dimensional conformal geometry, due to Richard Kenyon, that I learned of some time ago; I thought it might be fun to try to explain where it … Continue reading
Bridgeman’s orthospectrum identity
Martin Bridgeman gave a nice talk at Caltech recently on his discovery of a beautiful identity concerning orthospectra of hyperbolic surfaces (and manifolds of higher dimension) with totally geodesic boundary. The -dimensional case is (in my opinion) the most beautiful, … Continue reading
Schwarz-Christoffel transformations, Schwarzian derivatives, and Schwarz’s minimal surface
Hermann Amandus Schwarz (1843-1921) was a student of Kummer and Weierstrass, and made many significant contributions to geometry, especially to the fields of minimal surfaces and complex analysis. His mathematical creations are both highly abstract and flexible, and at the … Continue reading