-
Recent Posts
- Bing’s wild involution
- Stiefel-Whitney cycles as intersections
- Schläfli – for lush, voluminous polyhedra
- Slightly elevated Teichmuller theory
- Mr Spock complexes (after Aitchison)
- Roots, Schottky semigroups, and Bandt’s Conjecture
- Taut foliations and positive forms
- Explosions – now in glorious 2D!
- Dipoles and Pixie Dust
- Mapping class groups: the next generation
- Groups quasi-isometric to planes
- Div, grad, curl and all this
- A tale of two arithmetic lattices
- 3-manifolds everywhere
- kleinian, a tool for visualizing Kleinian groups
- Kähler manifolds and groups, part 2
- Kähler manifolds and groups, part 1
- Liouville illiouminated
- Scharlemann on Schoenflies
- You can solve the cube – with commutators!
- Chiral subsurface projection, asymmetric metrics and quasimorphisms
- Random groups contain surface subgroups
- wireframe, a tool for drawing surfaces
- Cube complexes, Reidemeister 3, zonohedra and the missing 8th region
- Orthocentricity
Blogroll
- 0xDE
- Area 777
- Bluefawnpinkmanga
- Combinatorics and more
- Deep street soul
- Evaluating E-Discovery
- floerhomology
- Gaddeswarup
- Geometric Group Theory
- Godel's lost letter and P=NP
- Images des mathematiques
- Jim Woodring
- Language Log
- Letters of note
- Low dimensional topology
- Math Overflow
- Math/Art Blog
- Mathematics under the microscope
- n-Category Cafe
- Noncommutative geometry
- Paul Krugman
- Persiflage
- Preposterous Universe
- Questionable content
- Quomodocumque
- Real Climate
- Scott McCloud
- Secret blogging seminar
- Sketches of topology
- Tanya Khovanova
- Terry Tao
- Tim Gowers
- Tony Phillips
Books
Software
Recent Comments
Anton Izosimov on How to see the genus Adam Wood on How to see the genus Constancy of the spe… on Measure theory, topology, and… Torsten on Circle packing – theory… aveliz on Second variation formula for m… Categories
- 3-manifolds (21)
- 4-manifolds (2)
- Algebraic Geometry (2)
- Algebraic Topology (1)
- Biology (2)
- Commentary (4)
- Complex analysis (11)
- Convex geometry (2)
- Diophantine approximation (1)
- Dynamics (13)
- Ergodic Theory (8)
- Euclidean Geometry (8)
- Foliations (2)
- Geometric structures (6)
- Groups (31)
- Hyperbolic geometry (25)
- Knot theory (1)
- Lie groups (8)
- Number theory (2)
- Overview (2)
- Polyhedra (3)
- Probability (1)
- Projective geometry (2)
- Psychology (3)
- Riemannian geometry (1)
- Rigidity (2)
- Special functions (2)
- Surfaces (20)
- Symplectic geometry (3)
- TQFT (1)
- Uncategorized (6)
- Visualization (10)
Meta
Category Archives: Groups
Hyperbolic Geometry Notes #5 – Mostow Rigidity
1. Mostow Rigidity For hyperbolic surfaces, Moduli space is quite large and complicated. However, in three dimensions Moduli space is trivial: Theorem 1 If is a homotopy equivalence of closed hyperbolic manifolds with , then is homotopic to an isometry. … Continue reading
Posted in 3-manifolds, Groups, Hyperbolic geometry, Uncategorized
3 Comments
FH, T, FLp and all that
I am (update: was) currently (update: but am no longer) in Brisbane for the “New directions in geometric group theory” conference, which has been an entirely enjoyable and educational experience. I got to eat fish and chips, to watch Australia … Continue reading
Posted in Groups, Lie groups, Rigidity
Tagged aTmenable, bounded cohomology, lattices, property FH, property FL_p, property T, universal lattice
Leave a comment
Polygonal words
Last Friday, Henry Wilton gave a talk at Caltech about his recent joint work with Sang-hyun Kim on polygonal words in free groups. Their work is motivated by the following well-known question of Gromov: Question(Gromov): Let be a one-ended word-hyperbolic group. … Continue reading
Posted in Groups, Surfaces
Tagged double of free group, ends, Henry Wilton, hyperbolic groups, roundoff trick, Sang-hyun Kim, scl, Stallings theorem on ends, surface subgroup
6 Comments
Quasimorphisms from knot invariants
Last week, Michael Brandenbursky from the Technion gave a talk at Caltech on an interesting connection between knot theory and quasimorphisms. Michael’s paper on this subject may be obtained from the arXiv. Recall that given a group , a quasimorphism … Continue reading
Posted in 3-manifolds, Groups
Tagged 4-ball genus, braids, Cochran-Orr-Teichner, knot concordance, quasimorphisms, ribbon, signature, slice
2 Comments
Harmonic measure
An amenable group acting by homeomorphisms on a compact topological space preserves a probability measure on ; in fact, one can given a definition of amenability in such terms. For example, if is finite, it preserves an atomic measure supported … Continue reading
Faces of the scl norm ball
I am in Melbourne at the moment, in the middle of giving a lecture series, as part of the 2009 Clay-Mahler lectures (also see here). Yesterday I gave a lecture with the title “faces of the scl norm ball”, and … Continue reading
Posted in Dynamics, Groups, Surfaces
Tagged Bavard duality, free groups, immersions, maximal representation, quasimorphisms, Rigidity, rotation number, scl, Surfaces, Symplectic geometry
1 Comment
Hyperbolic Geometry (157b) Notes #1
I am Alden, one of Danny’s students. Error/naivete that may (will) be found here is mine. In these posts, I will attempt to give notes from Danny’s class on hyperbolic geometry (157b). This first post covers some models for hyperbolic … Continue reading →