Category Archives: Complex analysis

Kenyon’s squarespirals

The other day by chance I happened to look at Richard Kenyon’s web page, and was struck by a very beautiful animated image there. The image is of a region tiled by colored squares, which are slowly rotating. As the … Continue reading

Posted in Complex analysis, Euclidean Geometry | Tagged , , , , | 21 Comments

Circle packing – theory and practice

I am spending a few months in Göttingen as a Courant Distinguished Visiting Professor, and talking a bit to Laurent Bartholdi about rational functions — i.e. holomorphic maps from the Riemann sphere to itself. A rational function is determined (up … Continue reading

Posted in Complex analysis, Visualization | Tagged , | 6 Comments

Minimal laminations with leaves of different conformal types

The “header image” for this blog is an example of an interesting construction in 2-dimensional conformal geometry, due to Richard Kenyon, that I learned of some time ago; I thought it might be fun to try to explain where it … Continue reading

Posted in Complex analysis, Surfaces | Tagged , , , , , , | 8 Comments

Schwarz-Christoffel transformations, Schwarzian derivatives, and Schwarz’s minimal surface

Hermann Amandus Schwarz (1843-1921) was a student of Kummer and Weierstrass, and made many significant contributions to geometry, especially to the fields of minimal surfaces and complex analysis. His mathematical creations are both highly abstract and flexible, and at the … Continue reading

Posted in Complex analysis, Euclidean Geometry, Surfaces | Tagged , , , , , , , | 4 Comments