The purpose of this blog post is to give a short, constructive, computation-free proof of the following theorem:
Theorem: Every compact subset of the Riemann sphere can be arbitrarily closely approximated (in the Hausdorff metric) by the Julia set of a rational map.
A rational map is just a ratio of (complex) polynomials. Every holomorphic map from the Riemann sphere to itself is of this form. The Julia set of a rational map is the closure of the set of repelling periodic points; it is both forward and backward invariant. The complement of the Julia set is called the Fatou set.
Kathryn Lindsey gave a nice constructive proof that any Jordan curve in the complex plane can be approximated arbitrarily well in the Hausdorff topology by Julia sets of polynomials. Her proof depends on an interpolation result by Curtiss. Kathryn is a postdoc at Chicago, and talked about her proof in our dynamics seminar a few weeks ago. It was a nice proof, and a nice talk, but I wondered if there was an elementary argument that one could see without doing any computation, and today I came up with the following.
The construction depends on the idea of an electromagnetic dipole. This is a pair of charged particles of equal but opposite charge; from far away, the two charges almost cancel, and the particle-pair is effectively neutral. The analog of a dipole for a rational map is a factor of the form
If
Now suppose we want to approximate the set
It is interesting that although such rational functions are essentially trivial to write down, drawing their Julia sets is bound to be disappointing. This is because when the zero-pole pair of the dipole are very close, the dipole is numerically indistinguishable from the constant function 1 at the resolution of the pixels in a drawing.
Here are four examples, with
When I mentioned this construction to Curt McMullen, he alerted me to another preprint by Oleg Ivrii, which gives another, quite different, construction of a polynomial with quasi-circle Julia set which approximates any given Jordan curve (apologies if there are alternate constructions by other people that I have not mentioned).
(Update November 4:) Oleg Ivrii gives yet another (even shorter!) construction of a Julia set approximating any closed set, in the comments below.
(Update November 13:) Merry Xmas!