When I was in Melbourne recently, I spent some time browsing through a copy of “Twelve Geometric Essays” by Harold Coxeter in the (small) library at AMSI. One of these essays was entitled “The classification of zonohedra by means of projective diagrams”, and it contained a very cute proof of the Sylvester-Gallai theorem, which I thought would make a nice (short!) blog post.
The Sylvester-Gallai theorem says that a finite collection of points in a projective plane are either all on a line, or else there is some line that contains exactly two of the points. Coxeter’s proof of this theorem falls out incidentally from an apparently unrelated study of certain polyhedra known as zonohedra.
For subsets
The simplest definition of a zonohedron (in any dimension) is that it is the Minkowski sum of finitely many intervals. Thus the faces of a zonohedra are themselves zonohedra. In 2 dimensions a zonohedron is a centrally symmetric polygon, and therefore has an even number of edges which come in parallel pairs of the same length. A zonohedron is convex, being the Minkowski sum of convex sets. Thus it is topologically a ball, and its boundary is topologically a sphere. A parallelepiped is an example of a 3-dimensional zonohedron; so is the rhombic dodecahedron and the rhombic triacontahedron. One can think of a zonohedron as a projection to a low dimensional space of a high dimensional parallelepiped; one can use this observation to produce interesting aperiodic tilings from zonohedra.
Here is Coxeter’s proof of the Sylvester-Gallai theorem. Let