You are currently browsing the tag archive for the ‘turtles’ tag.

My eldest daughter Lisa recently brought home a note from her school from her computer class teacher. Apparently, the 5th grade kids have been learning to program in Logo, in the MicroWorlds programming environment. I have very pleasant memories of learning to program in Logo back when I was in middle school. If you’re not familiar with Logo, it’s a simple variant of Lisp designed by Seymour Papert, whereby the programmer directs a turtle cursor to move about the screen, moving forward some distance, turning left or right, etc. The turtle can also be directed to raise or lower a pen, and one can draw very pretty pictures in Logo as the track of the turtle’s motion.

Let’s restrict our turtle’s movements to alternating between taking a step of a fixed size S, and turning either left or right through some fixed angle A. Then a (compiled) “program” is just a finite string in the two letter alphabet L and R, indicating the direction of turning at each step. A “random turtle” is one for which the choice of L or R at each step is made randomly, say with equal probability, and choices made independently at each step. The motion of a Euclidean random turtle on a small scale is determined by its turning angle A, but on a large scale “looks like” Brownian motion. Here are two examples of Euclidean random turtles for A=45 degrees and A=60 degrees respectively.

The purpose of this blog post is to describe the behavior of a random turtle in the hyperbolic plane, and the appearance of an interesting phase transition at . This example illustrates nicely some themes in probability and group dynamics, and lends itself easily to visualization.

## Recent Comments