You are currently browsing the tag archive for the ‘f-folded surface’ tag.

Let be the free group on two generators, and let be the endomorphism defined on generators by and . We define *Sapir’s group* to be the ascending HNN extension

This group was studied by Crisp-Sageev-Sapir in the context of their work on right-angled Artin groups, and independently by Feighn (according to Mark Sapir); both sought (unsuccessfully) to determine whether contains a subgroup isomorphic to the fundamental group of a closed, oriented surface of genus at least 2. Sapir has conjectured in personal communication that does not contain a surface subgroup, and explicitly posed this question as Problem 8.1 in his problem list.

After three years of thinking about this question on and off, Alden Walker and I have recently succeeded in finding a surface subgroup of , and it is the purpose of this blog post to describe this surface, how it was found, and some related observations. By pushing the technique further, Alden and I managed to prove that for a fixed free group of finite rank, and for a* random endomorphism* of length (i.e. one taking the generators to random words of length ), the associated HNN extension contains a closed surface subgroup with probability going to 1 as . This result is part of a larger project which we expect to post to the arXiv soon.

## Recent Comments