You are currently browsing the category archive for the ‘Groups’ category.

It’s been a while since I last blogged; the reason, of course, is that I felt that I couldn’t post anything new before completing my series of posts on Kähler groups; but I wasn’t quite ready to write my last post, because I wanted to get to the bottom of a few analytic details in the notorious Gromov-Schoen paper. I am not quite at the bottom yet, but maybe closer than I was; but I’m still pretty far from having collected my thoughts to the point where I can do them justice in a post. So I’ve finally decided to put Kähler groups on the back burner for now, and resume my usual very sporadic blogging habits.

So the purpose of this blog post is to advertise that I wrote a little piece of software called kleinian which uses the GLUT tools to visualize Kleinian groups (or, more accurately, interesting hyperbolic polyhedra invariant under such groups). The software can be downloaded from my github repository at

https://github.com/dannycalegari/kleinian

and then compiled from the command line with “make”. It should work out of the box on OS X; Alden Walker tells me he has successfully gotten it to compile on (Ubuntu) Linux, which required tinkering with the makefile a bit, and installing freeglut3-dev. There is a manual on the github page with a detailed description of file formats and so on.

Read the rest of this entry »

In this post I hope to start talking in a bit more depth about the global geometry of compact Kähler manifolds and their covers. Basic references for much of this post are the book Fundamental groups of compact Kähler manifolds by Amoros-Burger-Corlette-Kotschick-Toledo, and the paper Kähler hyperbolicity and L2 Hodge theory by Gromov. It turns out that there is a basic distinction in the world of compact Kähler manifolds between those that admit a holomorphic surjection with connected fibers to a compact Riemann surface of genus at least 2, and those that don’t. The existence or non-existence of such a fibration turns out to depend only on the fundamental group of the manifold, and in fact only on the algebraic structure of the cup product on H^1; thus one talks about fibered or nonfibered Kähler groups.

If X is a connected CW complex, by successively attaching cells of dimension 3 and higher to X we may obtain a CW complex Y for which the inclusion of X into Y induces an isomorphism on fundamental groups, while the universal cover of Y is contractible (i.e. Y is a K(\pi,1) with \pi the fundamental group of X). The (co)-homology of Y is (by definition) the group (co)-homology of the fundamental group of X. Since Y is obtained from X by attaching cells of dimension at least 3, the map induced by inclusion H^*(Y) \to H^*(X) is an isomorphism in dimension 0 and 1, and an injection in dimension 2 (dually, the map H_2(X) \to H_2(Y) is a surjection, whose kernel is the image of \pi_2(X) under the Hurewicz map; so the cokernel of H^2(Y) \to H^2(X) measures the pairing of the 2-dimensional cohomology of X with essential 2-spheres).

A surjective map f from a space X to a space S with connected fibers is surjective on fundamental groups. This basically follows from the long exact sequence in homotopy groups for a fibration; more prosaically, first note that 1-manifolds in S can be lifted locally to 1-manifolds in X, then distinct lifts of endpoints of small segments can be connected in their fibers in X. A surjection f_* on fundamental groups induces an injection on H^1 in the other direction, and by naturality of cup product, if V is a subspace of H^1(S) on which the cup product vanishes identically — i.e. if it is isotropic — then f^*V is also isotropic. If S is a closed oriented surface of genus g then cup product makes H^1(S) into a symplectic vector space of (real) dimension 2g, and any Lagrangian subspace V is isotropic of dimension g. Thus: a surjective map with connected fibers from a space X to a closed Riemann surface S of genus at least 2 gives rise to an isotropic subspace of H^1(X) of dimension at least 2.

So in a nutshell: the purpose of this blog post is to explain how the existence of isotropic subspaces in 1-dimensional cohomology of Kähler manifolds imposes very strong geometric constraints. This is true for “ordinary” cohomology on compact manifolds, and also for more exotic (i.e. L_2) cohomology on noncompact covers.

Read the rest of this entry »

After a couple years of living out of suitcases, we recently sold our house in Pasadena, and bought a new one in Hyde Park. All our junk was shipped to us, and the boxes we didn’t feel like unpacking are all sitting around in the attic, where the kids have been spending a lot of time this summer. Every so often they root through some box and uncover some archaeological treasure; so it was that I found Lisa and Anna the other day, mucking around with a Rubik’s cube. They had persisted with it, and even managed to get the first layer done.

I remember seeing my first cube some time in early 1980; my Dad brought one home from work. He said I could have a play with it if I was careful not to scramble it (of course, I scrambled it). After a couple of hours of frustration trying to restore the initial state, I gave up and went to bed. In the morning the cube had been solved – I remember being pretty impressed with Dad for this (later he admitted that he had just taken the pieces out of their sockets). Within a year, Rubik’s cube fever had taken over – my Mum bought me a little book explaining how to solve the cube, and I memorized a small list of moves. I remember taking part in an “under 10” cube-solving competition; in the heat of the moment, I panicked and got stuck with only two layers done (since there were only two competitors, I came second anyway, and won a prize: a vinyl single of the Barron Knights performing “Mr. Rubik”). The solution in the book was a procedure for completing the cube layer by layer, by judiciously applying in order some sequence of operations, each of which had a precise effect on only a small number of cubelets, leaving the others untouched. In retrospect I find it a bit surprising – in view of how much effort I put into memorizing sequences, reproducing patterns (from the book), and trying to improve my speed – that I never had the curiosity to wonder how someone had come up with this list of “magic” operations in the first place. At the time it seemed a baffling mystery, and I wouldn’t have known where to get started to come up with such moves on my own. So the appearance of my kids playing with a cube 33 years later is the perfect opportunity for me to go back and work out a solution from first principles.

Read the rest of this entry »

Last week I was at Oberwolfach for a meeting on geometric group theory. My friend and collaborator Koji Fujiwara gave a very nice talk about constructing actions of groups on quasi-trees (i.e. spaces quasi-isometric to trees). The construction is inspired by the famous subsurface projection construction, due to Masur-Minsky, which was a key step in their proof that the complex of curves (a natural simplicial complex on which the mapping class group acts cocompactly) is hyperbolic. Koji’s talk was very stimulating, and shook up my thinking about a few related matters; the purpose of this blog post is therefore for me to put some of my thoughts in order: to describe the Masur-Minsky construction, to point out a connection to certain geometric phenomena like winding numbers of curves on surfaces, and to note that a variation on their construction gives rise directly to certain natural chiral invariants of surface automorphisms (and their generalizations) which should be relevant to 4-manifold topologists.

Read the rest of this entry »

A few weeks ago, Ian Agol, Vlad Markovic, Ursula Hamenstadt and I organized a “hot topics” workshop at MSRI with the title Surface subgroups and cube complexes. The conference was pretty well attended, and (I believe) was a big success; the organizers clearly deserve a great deal of credit. The talks were excellent, and touched on a wide range of subjects, and to those of us who are mid-career or older it was a bit shocking to see how quickly the landscape of low-dimensional geometry/topology and geometric group theory has been transformed by the recent breakthrough work of (Kahn-Markovic-Haglund-Wise-Groves-Manning-etc.-) Agol. Incidentally, when I first started as a graduate student, I had a vague sense that I had somehow “missed the boat” — all the exciting developments in geometry due to Thurston, Sullivan, Gromov, Freedman, Donaldson, Eliashberg etc. had taken place 10-20 years earlier, and the subject now seemed to be a matter of fleshing out the consequences of these big breakthroughs. 20 years and several revolutions later, I no longer feel this way. (Another slightly shocking aspect of the workshop was for me to realize that I am older or about as old as 75% of the speakers . . .)

The rationale for the workshop (which I had some hand in drafting, and therefore feel comfortable quoting here) was the following:

Recently there has been substantial progress in our understanding of the related questions of which hyperbolic groups are cubulated on the one hand, and which contain a surface subgroup on the other. The most spectacular combination of these two ideas has been in 3-manifold topology, which has seen the resolution of many long-standing conjectures. In turn, the resolution of these conjectures has led to a new point of view in geometric group theory, and the introduction of powerful new tools and structures. The goal of this conference will be to explore the further potential of these new tools and perspectives, and to encourage communication between researchers working in various related fields.

I have blogged a bit about cubulated groups and surface subgroups previously, and I even began this blog (almost 4 years ago now) initially with the idea of chronicling my efforts to attack Gromov’s surface subgroup question. This question asks the following:

Gromov’s Surface Subgroup Question: Does every one-ended hyperbolic group contain a subgroup which is isomorphic to the fundamental group of a closed surface of genus at least 2?

The restriction to one-ended groups is just meant to rule out silly examples, like finite or virtually cyclic groups (i.e. “elementary” hyperbolic groups), or free products of simpler hyperbolic groups. Asking for the genus of the closed surface to be at least 2 rules out the sphere (whose fundamental group is trivial) and the torus (whose fundamental group \mathbb{Z}^2 cannot be a subgroup of a hyperbolic group). It is the purpose of this blog post to say that Alden Walker and I have managed to show that Gromov’s question has a positive answer for “most” hyperbolic groups; more precisely, we show that a random group (in the sense of Gromov) contains a surface subgroup (in fact, many surface subgroups) with probability going to 1 as a certain natural parameter (the “length” n of the random relators) goes to infinity. (update April 8: the preprint is available from the arXiv here.)

Read the rest of this entry »

There is an old puzzle which starts by asking: what is the next number in the sequence 1,2,4,? We are supposed to recognize the start of the sequence and answer that the next number is surely 8, because the first three numbers are consecutive powers of 2, and so the next number should be the cube of 2 which is 8. The puzzler then explains (contrary to expectations) that the successive terms in the sequence are actually the number of regions into which the plane is divided by a collection of lines in general position (so that any two lines intersect, and no three lines intersect in a single point). Thus:

lines_1

So the “correct” answer to the puzzle is 7 (and the sequence continues 11, 26, \cdots (n^2+n+2)/2). This is somehow meant to illustrate some profound point; I don’t quite see it myself. Anyway, I would like to suggest that there is a natural sense in which the “real” answer should actually be 8 after all, and it’s the point of this short blog post to describe some connections between this puzzle, the theory of cube complexes (which is at the heart of Agol’s recent proof of the Virtual Haken Conjecture), and the location of the missing 8th region.

Read the rest of this entry »

Let F=\langle a,b\rangle be the free group on two generators, and let \phi:F \to F be the endomorphism defined on generators by \phi(a)=ab and \phi(b)=ba. We define Sapir’s group C to be the ascending HNN extension

F*_\phi:=\langle a,b,t\; | \; a^t=ab,b^t=ba\rangle

This group was studied by Crisp-Sageev-Sapir in the context of their work on right-angled Artin groups, and independently by Feighn (according to Mark Sapir); both sought (unsuccessfully) to determine whether C contains a subgroup isomorphic to the fundamental group of a closed, oriented surface of genus at least 2. Sapir has conjectured in personal communication that C does not contain a surface subgroup, and explicitly posed this question as Problem 8.1 in his problem list.

After three years of thinking about this question on and off, Alden Walker and I have recently succeeded in finding a surface subgroup of C, and it is the purpose of this blog post to describe this surface, how it was found, and some related observations. By pushing the technique further, Alden and I managed to prove that for a fixed free group F of finite rank, and for a random endomorphism \phi of length n (i.e. one taking the generators to random words of length n), the associated HNN extension contains a closed surface subgroup with probability going to 1 as n \to \infty. This result is part of a larger project which we expect to post to the arXiv soon.

Read the rest of this entry »

Ian gave his second and third talks this afternoon, completing his (quite detailed) sketch of the proof of the Virtual Haken Theorem. Recall that after work of Kahn-Markovic, Wise, Haglund-Wise and Bergeron-Wise, the proof reduces to showing the following:

Theorem (Agol): Let G be a hyperbolic group acting properly discontinuously and cocompactly on a CAT(0) cube complex X. Then there is a finite index subgroup G’ so that X/G’ is special; in other words, G is virtually special.

Read the rest of this entry »

Follow

Get every new post delivered to your Inbox.

Join 156 other followers