You are currently browsing the category archive for the ‘3-manifolds’ category.

The title of this post is a nod to the excellent and well-known Div, grad, curl and all that by Harry Schey (and perhaps also to the lesser-known sequel to one of the more consoling histories of Great Britain), and the purpose is to explain how to generalize these differential operators (familiar to electrical engineers and undergraduates taking vector calculus) and a few other ones from Euclidean 3-space to arbitrary Riemannian manifolds. I have a complicated relationship with the subject of Riemannian geometry; when I reviewed Dominic Joyce’s book Riemannian holonomy groups and calibrated geometry for SIAM reviews a few years ago, I began my review with the following sentence:

Riemannian manifolds are not primitive mathematical objects, like numbers, or functions, or graphs. They represent a compromise between local Euclidean geometry and global smooth topology, and another sort of compromise between precognitive geometric intuition and precise mathematical formalism.

Don’t ask me precisely what I meant by that; rather observe the repeated use of the key word compromise. The study of Riemannian geometry is — at least to me — fraught with compromise, a compromise which begins with language and notation. On the one hand, one would like a language and a formalism which treats Riemannian manifolds on their own terms, without introducing superfluous extra structure, and in which the fundamental objects and their properties are highlighted; on the other hand, in order to actually compute or to use the all-important tools of vector calculus and analysis one must introduce coordinates, indices, and cryptic notation which trips up beginners and experts alike.

Read the rest of this entry »

When I started in graduate school, I was very interested in 3-manifolds, especially Thurston’s geometrization conjecture. Somehow in dimension 3, there is a marvelous marriage of flexibility and rigidity: generic 3-manifolds are flexible enough to admit hyperbolic structures — i.e. Riemannian metrics of constant curvature -1, modeled on hyperbolic space. But these structures are so rigid that they are determined up to isometry (!) entirely by the fundamental group of the manifold, and provide a bridge from topology to the rigid world of number fields and arithmetic. 3-manifolds, especially the hyperbolic ones, display an astonishing range of interesting phenomena, so that even though the individual manifolds are discrete and rigid, they come in infinite families parameterized by Dehn surgery. When Perelman proved Thurston’s conjecture, I gradually moved away from 3-manifold topology into some neighboring fields such as dynamics and geometric group theory; subjectively this move felt to me like a transition from a baroque world of highly intricate, finely tuned and beautiful objects to more rough and disordered domains in which the rule was chaos and disorder, and where one had to restrict attention and focus to find the kinds of structured objects that one can say something about mathematically. In these new domains my familiarity with 3-manifold topology was always extremely useful to me, but almost always as a source of inspiration or analogy or example, rather than that some specific theorem about 3-manifolds could be used to say something about groups in general, or dynamical systems in general, or whatever. Many important recent developments in geometric group theory are generalizations of geometric ideas which were first identified or studied in the world of 3-manifolds; but there was not much connection at the deepest level, at least as far as I could see.

This impression was dramatically shaken by Agol’s proof of the virtual Haken conjecture and virtual fibration conjectures in 3-manifold topology by an argument which depends for one of its key ingredients on the theory of non-positively curved cube complexes — a subject in geometric and combinatorial group theory which, while inspired by key examples in low-dimensions (especially surfaces in the hands of Scott, and graphs in the hands of Stallings), is definitely a high-dimensional theory with no obvious relations to manifolds at all. Even so, the transfer of information in this case is still from the “broad” world of group theory to the “special” world of 3-manifolds. It shows that 3-manifold topology is even richer than hitherto suspected, but it does not contradict the idea that the beautiful edifice of 3-manifold topology is an exceptional corner in the vast unstructured world of geometry.

I have just posted a paper to the arXiv, coauthored with Henry Wilton, and building on prior work I did with Alden Walker, that aims to challenge this idea. Let me quote the first couple of paragraphs of the introduction:

Geometric group theory was born in low-dimensional topology, in the collective visions of Klein, Poincaré and Dehn. Stallings used key ideas from 3-manifold topology (Dehn’s lemma, the sphere theorem) to prove theorems about free groups, and as a model for how to think about groups geometrically in general. The pillars of modern geometric group theory — (relatively) hyperbolic groups and hyperbolic Dehn filling, NPC cube complexes and their relations to LERF, the theory of JSJ splittings of groups and the structure of limit groups — all have their origins in the geometric and topological theory of 2- and 3-manifolds.

Despite these substantial and deep connections, the role of 3-manifolds in the larger world of group theory has been mainly to serve as a source of examples — of specific groups, and of rich and important phenomena and structure. Surfaces (especially Riemann surfaces) arise naturally throughout all of mathematics (and throughout science more generally), and are as ubiquitous as the complex numbers. But the conventional view is surely that 3-manifolds per se do not spontaneously arise in other areas of geometry (or mathematics more broadly) amongst the generic objects of study. We challenge this conventional view: 3-manifolds are everywhere.

Read the rest of this entry »

Yesterday and today Marty Scharlemann gave two talks on the Schoenflies Conjecture, one of the great open problems in low dimensional topology. These talks were very clear and inspiring, and I thought it would be useful to summarize what Marty said in a blog post, just for my own benefit.

The story starts with the following classical theorem, usually called the Jordan curve theorem, or Jordan-Schoenflies theorem:

Theorem (Jordan-Schoenflies): Let P be a simple closed curve in the plane. Then its complement has a unique bounded component, whose closure is homeomorphic to the disk in such a way that P becomes the boundary of the disk.

In order to make the relationship between the two complementary components more symmetric, one could express this theorem by saying that a simple closed curve P in the 2-sphere separates the 2-sphere into two components X and Y, each of which has closure homeomorphic to a disk with P as the boundary.

Based on this simple but powerful fact in dimension 2, Schoenflies asked: is it true for every n that every n-sphere P in the (n+1)-sphere splits the (n+1)-sphere into two standard (n+1)-balls?

Read the rest of this entry »

There is an old puzzle which starts by asking: what is the next number in the sequence 1,2,4,? We are supposed to recognize the start of the sequence and answer that the next number is surely 8, because the first three numbers are consecutive powers of 2, and so the next number should be the cube of 2 which is 8. The puzzler then explains (contrary to expectations) that the successive terms in the sequence are actually the number of regions into which the plane is divided by a collection of lines in general position (so that any two lines intersect, and no three lines intersect in a single point). Thus:

lines_1

So the “correct” answer to the puzzle is 7 (and the sequence continues 11, 26, \cdots (n^2+n+2)/2). This is somehow meant to illustrate some profound point; I don’t quite see it myself. Anyway, I would like to suggest that there is a natural sense in which the “real” answer should actually be 8 after all, and it’s the point of this short blog post to describe some connections between this puzzle, the theory of cube complexes (which is at the heart of Agol’s recent proof of the Virtual Haken Conjecture), and the location of the missing 8th region.

Read the rest of this entry »

Ian gave his second and third talks this afternoon, completing his (quite detailed) sketch of the proof of the Virtual Haken Theorem. Recall that after work of Kahn-Markovic, Wise, Haglund-Wise and Bergeron-Wise, the proof reduces to showing the following:

Theorem (Agol): Let G be a hyperbolic group acting properly discontinuously and cocompactly on a CAT(0) cube complex X. Then there is a finite index subgroup G’ so that X/G’ is special; in other words, G is virtually special.

Read the rest of this entry »

I am in Paris attending a workshop at the IHP where Ian Agol has just given the first of three talks outlining his proof of the Virtual Haken Conjecture and Virtual Fibration Conjecture in 3-manifold topology (hat tip to Henry Wilton at the Low Dimensional Topology blog from whom I first learned about Ian’s announcement last week). I think it is no under overstatement to say that this marks the end of an era in 3-manifold topology, since the proof ties up just about every loose end left over on the list of problems in 3-manifold topology from Thurston’s famous Bulletin article (with the exception of problem 23 — to show that volumes of closed hyperbolic 3-manifolds are not rationally related — which is very close to some famous open problems in number theory). The purpose of this blog post is to say what the Virtual Haken Conjecture is, and some of the background that goes into Ian’s argument. I hope to follow this up with more details in another post (after Agol gives talks 2 and 3 this coming Wednesday). Needless to say this post has been written in a bit of a hurry, and I have probably messed up some crucial details; but if that caveat is not enough to dissuade you, then read on.

Read the rest of this entry »

Patrick Foulon and Boris Hasselblatt recently posted a preprint entitled “Nonalgebraic contact Anosov flows on 3-manifolds”. These are flows which are at the same time Anosov (i.e. the tangent bundle splits in a flow-invariant way into stable, unstable and flow directions) and contact (i.e. they preserve a contact form — that is, a 1-form \alpha for which \alpha \wedge d\alpha is a volume form). Their preprint gives some very interesting new constructions of such flows, obtained by surgery along a Legendrian knot (one tangent to the kernel of the contact form) which is transverse to the stable/unstable foliations of the Anosov flow.

Read the rest of this entry »

My student Steven Frankel has just posted his paper Quasigeodesic flows and Mobius-like groups on the arXiv. This heartbreaking work of staggering genius interesting paper makes a deep connection between dynamics, hyperbolic geometry, and group theory, and represents the first significant progress that I know of on a conjectural program I formulated a few years ago.

One of the main results of the paper is to show that every quasigeodesic flow on a closed hyperbolic 3-manifold either has a closed orbit, or the fundamental group of the manifold admits an action on a circle with some very peculiar properties, namely that it is Mobius-like but not Mobius. The problem of giving necessary and sufficient conditions on a vector field on a 3-manifold to guarantee the existence of a closed orbit is a long and interesting one, and the introduction to the paper gives a brief sketch of this history as follows:

Read the rest of this entry »

Follow

Get every new post delivered to your Inbox.

Join 176 other followers