Author Archives: Danny Calegari

Taut foliations and positive forms

This week I visited Washington University in St. Louis to give a colloquium, and caught up with a couple of my old foliations friends, namely Rachel Roberts and Larry Conlon. Actually, I had caught up with Rachel (to some extent) … Continue reading

Posted in 3-manifolds, Foliations, Symplectic geometry | Tagged , , , , , , , | Leave a comment

Explosions – now in glorious 2D!

Dennis Sullivan tells the story of attending a dynamics seminar at Berkeley in 1971, in which the speaker ended the seminar with the solution of (what Dennis calls) a “thorny problem”: the speaker explained how, if you have N pairs of … Continue reading

Posted in Dynamics, Psychology, Visualization | Tagged , , , , , , | 2 Comments

Dipoles and Pixie Dust

The purpose of this blog post is to give a short, constructive, computation-free proof of the following theorem: Theorem: Every compact subset of the Riemann sphere can be arbitrarily closely approximated (in the Hausdorff metric) by the Julia set of … Continue reading

Posted in Complex analysis, Dynamics | Tagged , , | 6 Comments

Mapping class groups: the next generation

Nothing stands still except in our memory. – Phillipa Pearce, Tom’s Midnight Garden In mathematics we are always putting new wine in old bottles. No mathematical object, no matter how simple or familiar, does not have some surprises in store. My … Continue reading

Posted in Dynamics, Groups, Hyperbolic geometry, Surfaces | Tagged , , , , , , , | 7 Comments

Groups quasi-isometric to planes

I was saddened to hear the news that Geoff Mess recently passed away, just a few days short of his 54th birthday. I first met Geoff as a beginning graduate student at Berkeley, in 1995; in fact, I believe he gave the … Continue reading

Posted in 3-manifolds, Complex analysis, Groups, Hyperbolic geometry, Uncategorized | Tagged , , , , , | Leave a comment

Div, grad, curl and all this

The title of this post is a nod to the excellent and well-known Div, grad, curl and all that by Harry Schey (and perhaps also to the lesser-known sequel to one of the more consoling histories of Great Britain), and the purpose … Continue reading

Posted in 3-manifolds, Riemannian geometry | Tagged , , , , , | 9 Comments

A tale of two arithmetic lattices

For almost 50 years, Paul Sally was a towering figure in mathematics education at the University of Chicago. Although he was 80 years old, and had two prosthetic legs and an eyepatch (associated with the Type 1 diabetes he had his … Continue reading

Posted in Hyperbolic geometry, Number theory | Tagged , , | 2 Comments