
Recent Posts
 Taut foliations and positive forms
 Explosions – now in glorious 2D!
 Dipoles and Pixie Dust
 Mapping class groups: the next generation
 Groups quasiisometric to planes
 Div, grad, curl and all this
 A tale of two arithmetic lattices
 3manifolds everywhere
 kleinian, a tool for visualizing Kleinian groups
 Kähler manifolds and groups, part 2
 Kähler manifolds and groups, part 1
 Liouville illiouminated
 Scharlemann on Schoenflies
 You can solve the cube – with commutators!
 Chiral subsurface projection, asymmetric metrics and quasimorphisms
 Random groups contain surface subgroups
 wireframe, a tool for drawing surfaces
 Cube complexes, Reidemeister 3, zonohedra and the missing 8th region
 Orthocentricity
 Kenyon’s squarespirals
 Thurston talks on geometrization at Harvard
 Random turtles in the hyperbolic plane
 Surface subgroups of Sapir’s group
 Upper curvature bounds and CAT(K)
 Bill Thurston 19462012
Blogroll
 0xDE
 Area 777
 Combinatorics and more
 Deep street soul
 Evaluating EDiscovery
 floerhomology
 Gaddeswarup
 Geometric Group Theory
 Godel's lost letter and P=NP
 Images des mathematiques
 Jim Woodring
 Language Log
 Letters of note
 Low dimensional topology
 Math Overflow
 Mathematics under the microscope
 nCategory Cafe
 Noncommutative geometry
 Paul Krugman
 Persiflage
 Preposterous Universe
 Questionable content
 Quomodocumque
 Real Climate
 Scott McCloud
 Secret blogging seminar
 Sketches of topology
 T Calegari
 Tanya Khovanova
 Terry Tao
 Tim Gowers
 Tony Phillips
Books
Software
Recent Comments
Danny Calegari on Explosions – now in glor… rpotrie on Explosions – now in glor… Ferran on Mapping class groups: the next… Danny Calegari on Dipoles and Pixie Dust Laura DeMarco on Dipoles and Pixie Dust Categories
 3manifolds (18)
 4manifolds (2)
 Algebraic Geometry (2)
 Biology (2)
 Commentary (4)
 Complex analysis (9)
 Convex geometry (2)
 Diophantine approximation (1)
 Dynamics (12)
 Ergodic Theory (8)
 Euclidean Geometry (8)
 Foliations (2)
 Geometric structures (5)
 Groups (31)
 Hyperbolic geometry (22)
 Knot theory (1)
 Lie groups (8)
 Number theory (1)
 Overview (2)
 Polyhedra (2)
 Probability (1)
 Projective geometry (1)
 Psychology (3)
 Riemannian geometry (1)
 Rigidity (2)
 Special functions (1)
 Surfaces (19)
 Symplectic geometry (3)
 TQFT (1)
 Uncategorized (5)
 Visualization (10)
Meta
Author Archives: Danny Calegari
Taut foliations and positive forms
This week I visited Washington University in St. Louis to give a colloquium, and caught up with a couple of my old foliations friends, namely Rachel Roberts and Larry Conlon. Actually, I had caught up with Rachel (to some extent) … Continue reading
Explosions – now in glorious 2D!
Dennis Sullivan tells the story of attending a dynamics seminar at Berkeley in 1971, in which the speaker ended the seminar with the solution of (what Dennis calls) a “thorny problem”: the speaker explained how, if you have N pairs of … Continue reading
Dipoles and Pixie Dust
The purpose of this blog post is to give a short, constructive, computationfree proof of the following theorem: Theorem: Every compact subset of the Riemann sphere can be arbitrarily closely approximated (in the Hausdorff metric) by the Julia set of … Continue reading
Mapping class groups: the next generation
Nothing stands still except in our memory. – Phillipa Pearce, Tom’s Midnight Garden In mathematics we are always putting new wine in old bottles. No mathematical object, no matter how simple or familiar, does not have some surprises in store. My … Continue reading
Groups quasiisometric to planes
I was saddened to hear the news that Geoff Mess recently passed away, just a few days short of his 54th birthday. I first met Geoff as a beginning graduate student at Berkeley, in 1995; in fact, I believe he gave the … Continue reading
Div, grad, curl and all this
The title of this post is a nod to the excellent and wellknown Div, grad, curl and all that by Harry Schey (and perhaps also to the lesserknown sequel to one of the more consoling histories of Great Britain), and the purpose … Continue reading
Posted in 3manifolds, Riemannian geometry
Tagged curl, div, exposition, grad, Riemannian geometry, vector field
9 Comments
A tale of two arithmetic lattices
For almost 50 years, Paul Sally was a towering figure in mathematics education at the University of Chicago. Although he was 80 years old, and had two prosthetic legs and an eyepatch (associated with the Type 1 diabetes he had his … Continue reading
Posted in Hyperbolic geometry, Number theory
Tagged arithmetic lattice, Hyperbolic geometry, orthogonal group
2 Comments