
Recent Posts
 Taut foliations and positive forms
 Explosions – now in glorious 2D!
 Dipoles and Pixie Dust
 Mapping class groups: the next generation
 Groups quasiisometric to planes
 Div, grad, curl and all this
 A tale of two arithmetic lattices
 3manifolds everywhere
 kleinian, a tool for visualizing Kleinian groups
 Kähler manifolds and groups, part 2
 Kähler manifolds and groups, part 1
 Liouville illiouminated
 Scharlemann on Schoenflies
 You can solve the cube – with commutators!
 Chiral subsurface projection, asymmetric metrics and quasimorphisms
 Random groups contain surface subgroups
 wireframe, a tool for drawing surfaces
 Cube complexes, Reidemeister 3, zonohedra and the missing 8th region
 Orthocentricity
 Kenyon’s squarespirals
 Thurston talks on geometrization at Harvard
 Random turtles in the hyperbolic plane
 Surface subgroups of Sapir’s group
 Upper curvature bounds and CAT(K)
 Bill Thurston 19462012
Blogroll
 0xDE
 Area 777
 Combinatorics and more
 Deep street soul
 Evaluating EDiscovery
 floerhomology
 Gaddeswarup
 Geometric Group Theory
 Godel's lost letter and P=NP
 Images des mathematiques
 Jim Woodring
 Language Log
 Letters of note
 Low dimensional topology
 Math Overflow
 Mathematics under the microscope
 nCategory Cafe
 Noncommutative geometry
 Paul Krugman
 Persiflage
 Preposterous Universe
 Questionable content
 Quomodocumque
 Real Climate
 Scott McCloud
 Secret blogging seminar
 Sketches of topology
 T Calegari
 Tanya Khovanova
 Terry Tao
 Tim Gowers
 Tony Phillips
Books
Software
Recent Comments
Danny Calegari on Explosions – now in glor… rpotrie on Explosions – now in glor… Ferran on Mapping class groups: the next… Danny Calegari on Dipoles and Pixie Dust Laura DeMarco on Dipoles and Pixie Dust Categories
 3manifolds (18)
 4manifolds (2)
 Algebraic Geometry (2)
 Biology (2)
 Commentary (4)
 Complex analysis (9)
 Convex geometry (2)
 Diophantine approximation (1)
 Dynamics (12)
 Ergodic Theory (8)
 Euclidean Geometry (8)
 Foliations (2)
 Geometric structures (5)
 Groups (31)
 Hyperbolic geometry (22)
 Knot theory (1)
 Lie groups (8)
 Number theory (1)
 Overview (2)
 Polyhedra (2)
 Probability (1)
 Projective geometry (1)
 Psychology (3)
 Riemannian geometry (1)
 Rigidity (2)
 Special functions (1)
 Surfaces (19)
 Symplectic geometry (3)
 TQFT (1)
 Uncategorized (5)
 Visualization (10)
Meta
Monthly Archives: July 2009
BrianchonGramSommerville and ideal hyperbolic Dehn invariants
A beautiful identity in Euclidean geometry is the BrianchonGram relation (also called the GramSommerville formula, or Gram’s equation), which says the following: let be a convex polytope, and for each face of , let denote the solid angle along the … Continue reading
scl, sails and surgery
I have just uploaded a paper to the arXiv, entitled “Scl, sails and surgery”. The paper discusses a connection between stable commutator length in free groups and the geometry of sails. This is an interesting example of what sometimes happens … Continue reading
van Kampen soup and thermodynamics of DNA
The development and scope of modern biology is often held out as a fantastic opportunity for mathematicians. The accumulation of vast amounts of biological data, and the development of new tools for the manipulation of biological organisms at microscopic levels … Continue reading
Posted in Biology, Dynamics, Groups
Tagged biological computation, DNA, fatgraphs, free groups, Holliday junction, scl, thermodynamics, van Kampen diagrams
4 Comments
Orderability, and groups of homeomorphisms of the disk
I have struggled for a long time (and I continue to struggle) with the following question: Question: Is the group of selfhomeomorphisms of the unit disk (in the plane) that fix the boundary pointwise a leftorderable group? Recall that a … Continue reading
Posted in Dynamics, Groups
Tagged BurnsHale, distortion, Dynamics, orderable groups, quasimorphisms, Thurston stability theorem
4 Comments
Amenability of Thompson’s group F?
Geometric group theory is not a coherent and unified field of enquiry so much as a collection of overlapping methods, examples, and contexts. The most important examples of groups are those that arise in nature: free groups and fundamental groups … Continue reading →